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Heyting algebras

A Heyting algebra is a bounded distributive lattice (A, A, V,0,1)
equipped with a binary operation —, which is a right adjoint of
A. This means that for each a, b, x € A we have

aAx<b iff x<a—b.



Heyting algebras
Heyting algebras pop up in different areas of mathematics.

© Logic: Heyting algebras are algebraic models of
intuitionistic logic.

© Topology: opens of any topological space form a Heyting
algebra.

© Geometry: open subpolyhydra of any polyhedron form a
Heyting algebra.

@ Category theory: subobject classifier of any topos is a
Heyting algebra.

© Universal algebra: lattice of all congruences of any lattice
is a Heyting algebra.



Outline

The goal of the tutorial is to give an insight into the complicated
structure of the lattice of varieties of Heyting algebras.

The outline of the tutorial:
@ Heyting algebras and superintuitionistic logics
© Representation of Heyting algebras

© Hosoi classification of the lattice of varieties of Heyting
algebras

© Jankov formulas and splittings

@ Canonical formulas



Part 1: Heyting algebras and superintuitionistic logics



Constructive reasoning

One of the cornerstones of classical reasoning is the law of
excluded middle p vV —p.

Constructive viewpoint: Truth = Proof.

The law of excluded middle p Vv —p is constructively
unacceptable.

For example, we do not have a proof of Goldbach’s conjecture
nor are we able to show that this conjecture does not hold.



Constructive reasoning

On the grounds that the only accepted reasoning should be
constructive, the dutch mathematician L. E. J. Brouwer rejected
classical reasoning.

Luitzen Egbertus Jan Brouwer (1881 - 1966)



Intuitionistic logic

In 1930’s Brouwer’s ideas led his student Heyting to introduce
intuitionistic logic which formalizes constructive reasoning.

Arend Heyting (1898 - 1980)



Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is
obtained by dropping the law of excluded middle from the
axiomatization of classical logic.

CPC = classical propositional calculus
IPC = intuitionistic propositional calculus.

The law of excluded middle is not derivable in intuitionistic
logic. So IPC C CPC.

In fact,
CPC =1IPC+ (p V —p).

There are many logics in between IPC and CPC



Superintuitionistic logics

A superintuitionistic logic is a set of formulas containing IPC
and closed under the rules of substitution and Modus Ponens.

Superintuitionistic logics contained in CPC are often called
intermediate logics because they are situated between IPC and
CPC.

As we will see, intermediate logics are exactly the consistent
superintuitionistic logics.

Since we are interested in consistent logics, we will mostly
concentrate on intermediate logics.



Intermediate logics

CPC

LC=IPC+ (p—>q)V(qg—Dp)
Godel-Dummett calculus

KC =1IPC+ (—p V =—p)
weak law of excluded middle

IPC



Equational theories of Heyting algebras

Each formula ¢ in the language of IPC corresponds to an
equation ¢ =~ 1 in the theory of Heyting algebras.

Conversely, each equation ¢ = 1) can be rewritten as
¢ <> 1 ~ 1, which corresponds to the formula ¢ < 1.

This yields a one-to-one correspondence between
superintuitionistic logics and equational theories of Heyting
algebras.



Varieties of Heyting algebras

By the celebrated Birkhoff theorem, equational theories
correspond to varieties; that is, classes of algebras closed under
subalgebras, homomorphic images, and products.

Garrett Birkhoff (1911 - 1996)



Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of
Heyting algebras, while intermediate logics to non-trivial
varieties of Heyting algebras.

Heyt = the variety of all Heyting algebras.

Bool = the variety of all Boolean algebras.

A(IPC) = the lattice of superintuitionistic logics.
A(Heyt) = the lattice of varieties of Heyting algebras.
Theorem. A(IPC) is dually isomorphic to A(Heyt).

Consequently, we can investigate superintuitionistic logics by
means of their corresponding varieties of Heyting algebras.



Part 2: Representation of Heyting algebras



First typical example of a Heyting algebra
Open sets of any topological space X form a Heyting algebra,
where for openY,Z C X:

Y > Z=Int(Y°UZ), —Y = Int(Y°).

Y

0
®
R

YV-Y #R



Stone Representation

Theorem (Stone, 1937). Every Heyting algebra can be
embedded into the Heyting algebra of open sets of some
topological space.

Marshall Stone (1903 - 1989)



Stone representation

For every Heyting algebra A let X4 be the set of prime filters of A.
The Stone map ¢ : A — P(Xy) is given by

pla) ={xeXy:aex}.

Let Q4 be the topology generated by the basis {¢(a) : a € A}.

Theorem. ¢ : A — () is a Heyting algebra embedding.



Second typical example of a Heyting algebra

Up-sets of any poset (X, <) form a Heyting algebra where for
up-sets U,V C X:

UsV=X-L{U-V), U=X-|U

Here U is an up-set if x € U and x <y imply y € U and

WU ={xeX:3yecUwithx <y}.



Second typical example of a Heyting algebra



Kripke Representation

Theorem (Kripke, 1965). Every Heyting algebra can be
embedded into the Heyting algebra of up-sets of some poset.

Saul Kripke



Kripke representation

For every Heyting algebra A, order the set X4 of prime filters of
A by set-theoretic inclusion.

For a poset X let Up(X) be the Heyting algebra of up-sets of X.

Theorem. The Stone map ¢ : A — Up(Xy) is a Heyting algebra
embedding.

We want to characterize the ¢-image of A.

For this we will define a topology on X, and characterize this
image in order-topological terms.

This topology will be the so-called patch topology of Q4.



Esakia duality

This approach was developed by Esakia in the 1970’s.

Leo Esakia (1934 - 2010)



Esakia duality

An Esakia space is a pair (X, <), where:

@ X is a Stone space (compact, Hausdorff, zero-dimensional).
@ (X,<) is a poset.
© 1xisclosed for each x € X. Here tx = {y € X : x < y}.

@ If U is clopen (closed and open), then so is JU. Recall that
WU ={xeX:JyeUwithx <y}.



Esakia duality

Given an Esakia space (X, <) we take the Heyting algebra
(CpUp(X), N, U, —,0,X) of all clopen up-sets of X, where for
U,V € CpUp(X):

UsV=X-U-V).

For each Heyting algebra A we take the set X4 of prime filters of
A ordered by inclusion and topologized by the subbasis

{p(a@):acA}U{p(a):aecA}.

Alternatively we can take {p(a) — ¢(b) : a,b € A} as a basis for
the topology.



Esakia Duality

Theorem.

@ For each Heyting algebra A the map ¢ : A — CpUp(X4) is a
Heyting algebra isomorphism.

© For each Esakia space X, there is an order-hemeomorphism
between X and Xcpup(x)-

This is the object part of the duality between the category of
Heyting algebras and Heyting algebra homomorphisms and the
category of Esakia spaces and Esakia morphisms.



Priestley spaces

Order-topological representation of bounded distributive lattices
was developed by Priestley in the 1970s.

Hilary Priestley



Priestley spaces

In each Esakia space the following Priestley separation holds:

x £ y implies there is a clopen up-set U such that x € U and
y¢U.

Thus, every Esakia space is a Priestley space, but not vice versa.

It follows that Esakia duality is a restricted version of Priestley
duality.



Recap

@ The lattice of superintuitionistic logics is dually isomorphic
to the lattice of varieties of Heyting algebras.

© Stone Representation: Every Heyting algebra can be
embedded into the Heyting algebra of open sets of some
topological space.

© Kripke Representation: Every Heyting algebra can be
embedded into the Heyting algebra of up-sets of some
poset.

© Esakia Representation: Every Heyting algebra is isomorphic
to the Heyting algebra of clopen up-sets of some Esakia
space.



Part 3: Depth and Hosoi classification



Depth of Heyting algebras
Let (X, <) be a poset.

@ We say that X is of depth n > 0, denoted d(X) = n, if there
is a chain of n points in X and no other chain in X contains
more than n points. The poset X is of finite depth if
d(X) = n for some n > 0.

© We say that X is of infinite depth, denoted d(X) = w, if for
every n € w, X contains a chain consisting of n points.

Depth is also referred to as height.

Let A be a Heyting algebra.

The depth d(A) of A = the depth of the dual of A.
Let V be a variety of Heyting algebras.

The depth d(V) of V = sup{d(A) : A € V}.



Chains

Let ¢, be the n-element chain.

1
o

l.

<,

¢, is a Heyting algebra, where

a—b= ! gfagl?,
b otherwise.

d(Cps1) =n



Varieties of depth n

For a class K of Heyting algebras, let Var(K) be the variety of
Heyting algebras generated by K.

Let Lin be the variety generated by all finite chains.
Let also D, be the class of all Heyting algebras of depth n.

We will see later that each D, forms a variety.



Rough picture of the lattice

Heyt

Lin

Var(¢,)




Part 4: Jankov formulas and the cardinality of the lattice of
varieties



Filters and congruences

As in Boolean algebras, the lattice of filters of a Heyting algebra
is isomorphic to the lattice of congruences.

To each filter F corresponds the congruence 6 defined by

abpbifa« b €F.

To each congruence 6 corresponds the filter
Fo={acA:ahl}.

Consequently, the variety of Heyting algebras is congruence
distributive and has the congruence extension property.



Subdirectly irreducible Heyting algebras

By another theorem of Birkhoff, every variety of algebras is
generated by its subdirectly irreducible members.

Theorem (Jankov, 1963). A Heyting algebra is subdirectly
irreducible (s.i. for short) if it has a second largest element.

1



Esakia duals of s.i. Heyting algebras

1

0

If a Heyting algebra A is s.i., then the dual of A has a least
element, a root.

If an Esakia space is rooted and the root is an isolated point,
then its dual Heyting algebra is s.i.



Jankov formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the
second largest element of A.

For each a € A we introduce a new variable p, and define the
Jankov formula y(A) as the (A, V,—, 0, 1)-description of this
algebra.

X(A) = [A{Parb <> Pa ADp:a,b e AN
N{Pavb <> Pa V Dy : a,b € AN
A{Pa—b <> Pa = Pp : a,b € AIA
N{p-a & —Pq : a € A} — ps

If we interpret p, as a, then the Jankov formula of A is equal in
Atos,i.e., itis pre-true in A .



Axiomatization of varieties of Heyting algebras
Theorem (Jankov, 1963). Let B a Heyting algebra. Then

B £ y(A) iff A SH(B).

Dimitri Jankov



Axiomatization of varieties of Heyting algebras

Theorem (Jankov, 1963). Let B a Heyting algebra. Then
B}~ x(A) iff A € SH(B).

Proof. (Sketch). Suppose B [~ x(A). Then there exists a s.i.
homomorphic image C of B such that C [~ x(A). Moreover x(A)
is pre-true in C. This means that there is a valuation v on C such

that
V(/\{pa/\b <> Pa A\Dp :Q, be A}/\
A{Pavb <> Pa V pp : a,b € A}A
/\{Paab <> Pa —DPp: a,b EA}/\
/\{pﬂa <> 7Pq - a GA}) = 1C
and

V(ps) = Sc



Axiomatization of varieties of Heyting algebras

Therefore, for all a,b € A we have:

V(Parb) = V(Pa) A V(Pp)
V(Pavb) = V(Pa) V V(D)
V(Pa—sb) = V(Pa) = V(Pp)
V(p-a) = V(pa)

v(ps) = sc

We consider the map h : A — C given by h(a) = v(pq)-
Then h is a Heyting embedding.
Conversely, as A = x(A) and A € SH(B) we see that B [~ x(A).



Splittings

Jankov formulas are used to axiomatize many varieties of
Heyting algebras.

For example, they axiomatize all splitting varieties of Heyting
algebras.

Splittings started to play an important role in lattice theory in
the 1940s.

A pair (a,b) splits a lattice L if a £ b and for each ¢ € L:

a<corc<b



Splittings

R. McKenzie in the 1970’s revisited splittings when he started an
extensive study of lattices of varieties.

Ralph McKenzie



Splittings

Heyt

Heyt + x(A)

Var(A)

Bool

Figure: Splitting of the lattice of varieties of Heyting algebras



Splittings

Theorem. For each subdirectly irreducible Heyting algebra A
the pair (Var(A), Heyt + x(A)) splits the lattice of varieties of
Heyting algebras.

Proof. (Sketch) Since A [~ x(A), we see that
Var(A) Z Heyt + x(A).

Suppose V is a variety such that V Z Heyt + x(A).
Then there is B € V such that B [~ x(A).
By Jankov’s theorem, A € SH(B) and so Var(A) C V.

The other direction follows from a result of McKenzie (1972).



Rough picture of the lattice

Heyt
Lin
Heyt + x(&5)
Var(¢4)
Heyt + x(€4)
Var(¢;) @~
[



Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write A < B if
A € SH(B).

Theorem. If A is an <-antichain of finite s.i. algebras, then for
each I,J C A with I # J, we have

Heyt + {y(A) : A € I} # Heyt + {x(A) : A € J}.
Proof. (Sketch) If I Z J, then there is B € I such that B ¢ J.

Then A £ B for each A € J. Therefore, by Jankov’s theorem,
B = x(A) for each A € J.

So B € Heyt + {x(A) : A € J}.
But B [~ x(B). So B ¢ Heyt + {x(A) : A € I}.

How can we construct an <-antichain of finite s.i. algebras?



Antichains

Lemma. A; is an <-antichain.



Antichains

Lemma. A, is an <-antichain.



Continuum of varieties of Heyting algebras

Corollary.
© There is a continuum of varieties of Heyting algebras.

© In fact, there is a continuum of varieties of Heyting algebras
of depth 3.

© And there is a continuum of varieties of Heyting algebras of
width 3.



Rough picture of the lattice

Heyt
Lin
Heyt + x(&5)
Var(¢4)
Heyt + x(€4)
Var(¢;) @~
[



Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov
formulas?

A variety V is locally finite if every finitely generated V-algebra
is finite.

Theorem Every locally finite variety of Heyting algebras is
axiomatized by Jankov formulas.

Corollary. Varieties of finite depth are locally finite and hence
axiomatized by Jankov formulas.



Finitely generated algebras

However, there are continuum many non-locally finite varieties
of Heyting algebras.

Theorem (Rieger, 1949, Nishimura, 1960). The 1-generated
free Heyting algebra, also called the Rieger-Nishimura lattice, is
infinite.



The Rieger-Nishimura Lattice

®
g -8



1-generated free Heyting algebra

1 g -8
®
g -8
o

0 {1}



Axiomatization of varieties of Heyting algebras

There exist varieties of Heyting algebras that are not
axiomatized by Jankov formulas.

Problem: Can we generalize Jankov’s method to all varieties of
Heyting algebras?



Recap

@ Classification of the lattice of varieties of Heyting algebras
via their depth.

© Subdirectly irreducible Heyting algebras and their dual
Esakia spaces.

© Jankov formulas and splitting varieties.

© Continuum of varieties of Heyting algebras via Jankov
formulas.

© Problem: Can we generalize Jankov’s method to all
varieties of Heyting algebras?



Part 5: Canonical formulas



Axiomatization of varieties of Heyting algebras

The affirmative answer was given by Michael Zakharyaschev via
canonical formulas.

Michael Zakharyaschev



Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have
locally finite reducts.

Heyting algebras (A, A,V,—,0,1).
V-free reducts (A, A\, —,0,1): implicative semilattices.
—-free reducts (A, A, V,0,1): distributive lattices.

Theorem.
o (Diego, 1966). The variety of implicative semilattices is
locally finite.

@ (Folklore). The variety of distributive lattices is locally
finite.



(A, —)-canonical formulas

We will use these reducts to derive desired axiomatizations of
varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas.

Jankov formulas describe the full Heyting signature. We will
now look at V-free reducts.

The homomorphisms will now preserve only A, 0 and —. In
general they do not preserve V. But they may preserve some
joins.

This can be encoded in the following formula.



(A, —)-canonical formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the
second largest element of A, and D a subset of A2.

For each a € A we introduce a new variable p, and define the
(A, —)-canonical formula «(A, D) associated with A and D as

@(A,D) = [A{Parb > PaADp:ab €A}
/\{Paab < Pa — Dp:a,b EA}/\
MNP-a <+ —Pq s a € AFA
A{Pavb <> Pa V Py : (a,b) € D}] — ps

Note that if D = A2, then «(A,D) = x(A).



(A, —)-canonical formulas

Theorem. Let A be a finite s.i. Heyting algebra, D C A%, and B a
Heyting algebra. Then

B~ (A, D) iff there is a homomorphic image C of B and an
(A, —)-embedding h : A — C such that h(a V b) = h(a) V h(b)
for each (a,b) € D.

Theorem. Every variety of Heyting algebras is axiomatized by
(A, —,0)-canonical formulas.

We show that for each formula ¢ there exist finitely many
A1, ...,An and D; C A? such that

Heyt + ¢ = Heyt + a(A1,D1) + -+ - + a(Am, D)



(A, —)-canonical formulas

Proof idea. Suppose B |~ .
Then there exist elements a1, ...,a, € B on which ¢ is refuted.

We generate the implicative semilattice (A, A, —,0) of B by the
subpolynomials ¥ of ¢(ai,...,an).

By Diego’s theorem (A, A, —, 0) is finite.



(A, —)-canonical formulas

We define a “fake” V on Aby avb = A\{s € A:s > a,b}. Then
(A, A, V,0,—) is a finite Heyting algebra. Also for a,b € A we
have

aVb<avb.

Moreover, if a Vb € ¥ then
aVb=avb.

This implies that the algebra (A, A, V, —, 0) refutes (.



(A, —)-canonical formulas

Now we let D = {(a,b) :a Vb € X}.

Then
Al B
iisa (A, —,0)-embedding, preserving \V on the elements of D.

A may not be s.i.



(A, —)-canonical formulas

We take a s.i. homomorphic image A’ of A (such can always be
found) via some « that refutes ¢. We also let D’ be the x-image
of D. So

Al B

|+

A/

iisa (A,—,0)-embedding, preserving V on the elements of D,
and « is a Heyting homomorphism.



(A, —)-canonical formulas

Implicative semilattices have the congruence extension
property. Thus, there is an implicative semillatice C such that

AC L. B

L ¥

A ¢
Onto (A, —, 0)-homomorphisms are Heyting homomorphisms,
so C is a Heyting algebra that is a homomorphic image of B.
Moreover, h preserves \/ on the elements of D'.

So we found a finite s.i. algebra A’ and a set D’ C A’? such that
A'is (A, —,0)-embedded into a homomorphic image of B
preserving V on D'.



(A, —)-canonical formulas

So B refutes a(A’,D’).
Let k = |Sub(yp)|.

By Diego’s theorem there is M(k) such that every k-generated
implicative semilattice has less than M(k)-elements.

Let A1, ...,Apn be the list of all (finitely many) Heyting algebras
of size M(k)-refuting .

Let V; be a valuation refuting ¢ in A;. Set

Yi = {Vi(¥) : ¥ € Sub(p)}.

LetD; = {(a,b) :aVvb € %;}.

By construction |A’| < M(k). So (A’,D’) = (A;,D;) for some
i<m.



(A, —)-canonical formulas

Thus, we proved that B [~ ¢ implies B [~ «(A;, D;) for some
i<m.

Conversely, let B |~ a(A;, D;) for some i < m.

Then here is a homomorphic image C of B and an
(A, —,0)-embedding h : A; — C such that h(a vV b) = h(a) Vv h(b)
for each (a,b) € D;.

By construction of D; we have that C - .

So B |~ ¢.

Thus, we proved
Heyt + ¢ = Heyt + a(A1,D1) + -+ - + a(Am, D)

Therefore, every variety of Heyting algebras is axiomatized by
(A, —)-canonical formulas.



Subframe formulas

a(A,A%) = X(A).
a(A, () is called a subframe formula.

Subframes play the same role here as submodels in model
theory.

Theorem. Let A be a finite s.i. algebra and X, its dual space. A
Heyting algebra B refutes «(A) iff X, is a subframe Xp.

(A, —)-embeddability means that we take subframes of the dual
space.

There are continuum many logics axiomatized by such formulas.

All subframe logics have the finite model property.



Subframe formulas

Theorem: Let A be a s.i. Heyting algebra and X, its dual space.
Then

@ X, has width < n iff n-fork is not a subframe of X, iff a(Fn)

is true in A.

Sn

A variety of Heyting algebras V is of width < n if the width of X4
is <nforeachs.i.AeV

V is of width < n iff A = a(3n), foreachA eV



(A, V)-canonical formulas

We can also develop the theory of (A, V)-canonical formulas
~v(A, D) using the —-free locally finite reducts of Heyting
algebras.

The theory of these formulas is different than that of
(A, —)-canonical formulas.

Theorem. Every variety of Heyting algebras is axiomatized by
(A, V)-canonical formulas.



(A, V)-canonical formulas

Let A be a finite s.i. Heyting algebra, let s be the second largest
element of A, and let D be a subset of A2. For each a € A,
introduce a new variable p,, and set

I' = (po+ L)A(p1 < TA
A {Parb <> Pa APy : a,b € A} A
A {Pavb <> Pa VP : a,b € A} A
N {Pasp <> Pa — Pp : (a,b) € D}

and

A = \{pa—pp:abeAwitha £ b}.

Then define the (A, V)-canonical formula (A, D) associated

with A and D as
v(A,D) =T — A.



(A, V)-canonical formulas

If D = A2, then (A, D) = x(A). If D = (), then v(A, ) = v(A)

Theorem. Let A be a finite s.i. Heyting algebra. A Heyting
algebra B refutes v(A) iff X4 is an order-preserving image of Xp.

These formulas are counterparts of subframe formulas.

There are continuum many logics axiomatized by such formulas.



Applications of canonical formulas

@ In obtaining large classes of logics with the finite model
property.

@ In proving the Blok-Esakia isomorphism between the lattice
of varieties of Heyting algebras and the subvrarites of the
Grzegorczyk algebras.

@ In showing that the substructural hierarchy of
Ciabattoni-Galatos-Terui collapses over superintuitionistic
logics.

@ In proving that admissibility is decidable over intuitionistic
logic and in finding a basis for admissible rules.



Open problems

Characterize locally finite varieties of Heyting algebras.

Conjecture: A variety V of Heyting algebras is locally finite
iff Fy(2) is finite.

Is every variety of Heyting algebras generated by a class of
Heyting algebras of the form Op(X) for some topological
space X (Kuznetsov, 1975).

Heyt is generated by Op(R) (McKinsey and Tarski, 1946).
Generalize the theory of (A, —) and (A, V)-canonical

formulas to other non-classical logics e.g, substractural
logics. For modal logics this has been done already.



